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DIVISION ALGORITHM :

Statement — Given two integers a , b, with b > 0, there exist unique integers q ,r such
that a = b.q + r, where 0 < r < b.

[Note: g is called the quotient and r is called the remainder in the division of a by b.]

Proof — LetusconsiderS ={a—b.x:x€ Z, a—b.x >0}. So SCZ.
To show first: S is non-empty.
Sinceb>0= b>1= |a|l.b=|a|l = a+|al.b=a+]|a|l =0.
= a — b.(—|al|) € S.= S is non-empty.
Since S is a non-empty set of non-negative integers,
the least element r (say) of S can be
either (i) O,
or  (ii) asmallest positive integer by the well ordering property of the set N.
Hence 3 an q € Z suchthat a—b.q = r, r > 0.

We proclaimthat: » < b.

Because r>b = a—-(q+1).b=(a—q.b)—b=r—b >0.
Also a—(@+1).b=(a—q.b)—-b=r—>b <r.
Nowa—(qg+1).beS,0<a—-(qg+1).b<r.

= r cannot be the least element of S, a contradiction.
Hencea = b.q +r where, 0 <r < b.

Uniqueness of q & 1 :
Let us suppose that a = b.q+7r,a=b.q; + 1, where0<r, , <b;
q, q1,7, 11 € Z.
=blg—ql=|n—-rl, -b<nr,—-r<b.
=b.lqg—qi| = |rn—71| <b.
=|g—-ql<1.=q=g¢q,,sinceq, q, € Z.
=r=r.
This completes the proof.

General Version of DIVISION ALGORITHM :

Statement — Given two integers a , b, with b # 0, there exist unique integers q ,r such
that a = b.q + r, where 0 < r < |b|.

Proof — Previously we have proved Division Algorithm for the case when b > 0.
So now we consider the case when b < 0. Then |b| > 0.
By the previous proof, 3 unique q;, r € Z such that

a = |bl.gg+ 1, 0<r<|b|
=—b.qu +7r, sinceb < 0.
~a= b.qg +r, whereq=—q,.

This completes the proof.



Examples:

1. Leta= —15, 4, 21; b=6. 2. Leta= —15, 4, 21; b= —6.
15=6.(3)+3 =q=-3,r=3; 15=(-6).(3)+3 =q=3,r=3
4=6.0 +4 =q=0r=4; 4=(6).0 +4 =q=0,r=4
21 6. 3 +3 =>q=3,r=3. 21=(-6).(3)+3 =>q=-3,r=3.

REMARK: When the remainder r = 0 in the Division algorithm, we have the following:
Definition 1. An integer a is said to be divisible by an integer b # 0 if 3 some ¢ € Z
s.t. a = b.c and we write b|a .
Properties:

1. bla = (—b)|a, because a = b.c = a = (-b).(—c),

2. bla and alc = b|c,

3. bla and alb ifandonlyif b= +a,

4. bla and b|c = b| (a.x + c.y) forany x, y € Z . Because

bla = a=b.m for some m€Z; bjc = c =b.n for somen € Z.

~ ax+cy=bmx+bny=>b(mx+ny) =b|(a.x+cy).

Definition 2. An integer d is said to be a common divisor of the integers a and b if d|a
and d|b .

Properties:

1. 1isacommon divisor of an arbitrary pair of integers a and b ;
2. If both a = 0 and b = 0 then each integer a common divisor of a and b ;
3. Ifatleast one of a and b is non-zero then 3 only a finite number of positive common

divisors.

Definition 3. If a, b € Z , not both zero, the greatest common divisor of a and b, denoted

by gcd(a, b) is the positive integer d satisfying
i. dla and d|b ; (d as a common divisor)

ii. Ifforsomec € Z*, cla and c|b = c|d . (d is the greatest common divisor)



NOTE: gcd(a,—b) = gcd(—a,b) = gcd(—a,—b) = gcd(a, b) . (follows from definition)
Example: Let a = —20, b = —30 . The common positive divisors of a and b are: 1,2, 5, 10.
~ gcd(—a,—b) = gcd(—20,—-30) = 10.

Definition 4. a,b € Z , not both zero, are said to be prime to each other or relatively

prime if gcd(a,b) = 1.

Properties of gcd :

1. Theorem: Ifa, b € Z , not both zero,then3 u,v € Z s.t. gcd(a,b) =a.u+b.v .
Proof —»  LetusconsiderS ={a.x+b.y:x, y€ Z, aax+b.y>0}. So ScZ*.

To show first: S is non-empty.
Since a, b € Z , not both zero, leta # 0 then |a| > 0.
= lal|=a.x+b.0 €S, where x= 1, y=0ifa>0,
and x=-1,y=0ifa<0.
= § is non-empty.
Since S is a non-empty set of positive integers, by the well ordering property of
the set N, S contains a least element d (say).
Then d =a.u+b.v: u ve Z.
By division algorithm, a =d.q +r whereq, r€ Z, 0 <r <d.
=r=a—-dq=a—(au+bv).g=a(1—-ugq)+b.(—v.q).
= if r > 0 then 7€ §S.
Again if r < d and d being the least element in S then r € S .
So 0 <r < d isnot possible.
Consequently, r=0 = a=d.q = d|a.
By similar arguments considering b = d.q + r we can show that d|b.
So d|a and d|b.

Next to show: d = gcd(a,b) .
Let cla and c|b.= c|(a.u+ b.v) = c|d = d = gcd(a,b).
This proves the theorem.

NOTE: (i) gcd(a,b) can always be expressed as a linear combination of a and b.
(ii) d = gcd(a,b) is the least positive value of a.x+b.y; x, yE€ Z.
(i) d =a.u+b.v=a.(u+k.b) +b.(v—k.a), wherek € Z.
So integers x and y are not unique for which the integer a.x + b.y is least positive.



2. Theorem: Ifa, b € Z , not both zero, and k € Z* then gcd(ka,kb) = k.gcd(a,b).

Proof - Let d = gcd(a,b). Then3u,v €Z st. d=a.u+b.v; d|a and d|b.
Now d|la = k.d|k.a and d|b = k.d|k.b .
= k.d is a common divisor of k.a and k.b .
Let ¢ be any other common divisor of k.a and k.b .
~ clk.a > k.a=m.c and clk.b = k.b=n.c; m, n€ Z.
Now k.d =k.(a.u+b.v) =m.c.cu+n.c.v=mu+nv).c
= clk.d.
Consequently, k.d = gcd(ka, kb).i.e., gcd(ka,kb) = k.gcd(a,b).

3. Theorem: If a,b € Z , not both zero, then gcd(a,b) = 1 if and only if 3 u,v € Z
st 1=au+b.v.

Proof — Let gcd(a,b) =1.Then3d u,v€Z st. 1=a.u+b.v .
Conversely, let 3 u,v €Z st. 1 =a.u+ b.v andletd = gcd(a, b).
Since d|a and d|b then d|(a.x +b.y); Vx,yEZ.
= d|l =d=1, since de Z*.
= gcd(a,b) =1.

4. Theorem: If d = gcd(a,b) ,then gcd (g,g) =1.

Proof — Let d = gcd(a,b) . Then d|a and d|b .

dla= 3 meZ st a=m.d;dlb= I neZ st. b=n.d.

a b a b .
Now —=m,—-=mn;so - and - are integers.

Since d = gcd(a,b) then3d u,v €Z st. d=a.u+b.v.
=>1=(%).u+(§).v. = gcd(%,g)zl.

5. Theorem: If a|b.c and gcd(a,b) =1, then alc.

Proof —» alb.c= 3 k€Z st b.c=k.a
gcd(a,b) =1 = I w,veEZ st. 1=au+b.v.
=c=auc+bv.c =>c=auc+kav=wmc+v.k)a.
= alc . [ Since u.c+v.k €Z]

6. Theorem: If a|c and b|c with gcd(a,b) =1, then a.b|c.

Proof - alc= Ime€Z st c=m.a; bjc= In€Z st c=nb
gcd(a,b) =1 = I3 wveZ st 1l=au+b.v =c=auc+b.v.c
=c=aunb+bv.ma=ab.(un+v.m)
= a.b|c . [Since u.n+v.m €Z]



7. Theorem: If gcd(a,b) =1 and gcd(a,c) =1 then gcd(a, b.c) =1.

Proof - gcd(a,b) =1 = I w,ve€Z st. 1=au+b.v ..... (1)
gcd(a,c)=1 = A p,q€Z st. 1l=ap+c.q ... (i)
From (i) & (ii) we get: b.v=1—a.u ... (iii)
and cqgq=1—-a.p ...(iv)
Multiplying (iii) & (iv) we get, b.c.(v.q) =1—a.p—a.u+a?u.p
=a(u+p—aup)+b.c(v.q) =1
= gcd(a, b.c)=1. [Since (u+p—a.u.p), v.q €EZ]

EUCLIDEAN ALGORITHM :

Euclidean algorithm is an efficient method of finding the gcd of two given integers by repeated
application of the division algorithm.

Procedure — Let a, b be two integers. Without loss of generality, let us assume a > b > 0,
since gcd(a, b) = ged(|al, |b]).
Applying the division algorithm successively, we obtain the following relations :

a=b.q +1r; 0<nr, <b, [q =quotient, r; = remainder # 0, when a is divided by b]
b=r.q,+1r,; 0<r,<r, [q; = quotient, r, = remainder # 0, when b is divided by r; ]
rn=r,.q3+1r;3; 0<r3 <1y, [q3 = quotient, r; = remainder # 0, when 1y is divided by ;]
This process continues until some zero remainder appears.
Tpep =Tpo1-Qn + 1, 5 0 <1, <1_1, [qn = quotient, 1, = remainder # 0, when 1;,_, is
divided by 7;,_1 ; let us assume that 7;, is the last non-zero remainder]
Tno1 =ToQue1 +0 5 0 <1, <11, [qne1 = quotient, 1,., = 0, when r,,_4 is divided by 1,].

We assert that r,, = gcd(a, b).
First of all we prove the Lemma: If a = b.q + r,then gcd(a,b) = gcd(b,r).

Proof: Let d = gcd(a,b) = dla,d|b = d|(a—b.q) = d|r.
= d is a common divisor of b and r .
Let ¢ be any other common divisor of b and r = c¢|(b.q + 1) = cla.
= c is a common divisor of a and b = c|d , since d = gcd(a, b).
= d = gcd(b,1), since d is a common divisor of b and r .
= gcd(a,b) = ged(b, 7).
We utilize the lemma to show that r, = gcd(a, b).
T = gcd(0,7,) = ged(r—1, 1) = ged(n—2, 1) = ged (13, Tp—2) = =+
= ged(ry, 13) = ged(ry, 1) = ged(b, 1) = ged(a, b).
Also 1, can be expressed as a linear combination of a and b.

Because we have 15, = 1,3 — 1—1-Qn = T2 — (n—3 — ™—2-Qn-1)-qn -
=1+ qn_1-9n)-Tn—2 + (—qy)-1n_3 - [linear combination of 1,,_ , 7p_5]

Proceeding backwards we can express 7;, as a linear combination of a and b.



Exercise: 9. Use Euclidean algorithm to find integers u and v such that
(i) gcd(72,120) = 72u+120v (i) gcd(13,80) =13u+80v.
Solution: (i) Let us find the gcd(72,120). By Euclidean algorithm,
120 =72.1+48, 72 =481+ 24, 48 =242+0;
~ gcd(72,120) = 24 (The last non-zero remainder).
Now 24 =72—-481=72—-(120—-72).1 =722+ 120.(-1).
=72u+ 120v, where u=2,v=-1.
Solution: (ii) Let us find the gcd(13,80). By Euclidean algorithm,
80=136+2, 13=26+1, 2=12+4+0;
~ gcd(13,80) = 1 (The last non-zero remainder).
Now 1 =13—-2.6 =13 - (80 —13.6).6 = 13.37 + 80.(—6).
= 13u + 80v, where u =37, v=—6.
Exercise: 10. Find integers u and v satisfying
(1) 20u+63v=1, (i) 30u+72v =12, (i) 52u—91v =78.
Solution: (i) Let us find the gcd(20, 63). By Euclidean algorithm,
63=203+3,20=36+2,3=21+1,2=12+0.;
~ gcd(20,63) = 1 (The last non-zero remainder).
Now 1=3-21=3-(20-3.6).1=3.74+20.(-1)
= (63 —20.3).7 + 20.(—1) = 63.7 + 20.(—22).
= 20u + 63v, where u=-22,v=7.
Solution: (ii) Do yourself.
Solution: (iii) Let us find the gcd(52,91). By Euclidean algorithm,
91 =52.1+39, 52=39.1+13, 39=133+0.
%~ gcd(52,91) = 13 (The last non-zero remainder).
Now 13 =52-39.1=52-(91-52.1) =522-91.1
= 13.6=52.2.6 -91.1.6
= 78 =5212-91.6 =52u—91v, where u=12,v=6.



