STUDY MATERIALS SUBJECT: MTMH

PAPER- C2 UNIT-2

DR. SANGITA CHAKRABORTY
ASSOCIATE PROFESSOR
DEPT. OF MATHEMATICS
KHARAGPUR COLLEGE

DIVISION ALGORITHM:

Statement \rightarrow Given two integers a, b, with b > 0, there exist unique integers q, r such that a = b, q + r, where $0 \le r < b$.

[Note: q is called the quotient and r is called the remainder in the division of a by b.]

Proof \rightarrow Let us consider $S = \{a - b : x : x \in \mathbb{Z}, a - b : x \ge 0\}$. So $S \subseteq \mathbb{Z}$.

To show first: S is non-empty.

Since $b > 0 \implies b \ge 1 \implies |a| \cdot b \ge |a| \implies a + |a| \cdot b \ge a + |a| \ge 0$.

$$\Rightarrow a - b.(-|a|) \in S. \Rightarrow S$$
 is non-empty.

Since S is a non-empty set of non-negative integers,

the least element r (say) of S can be

either (i) 0,

or (ii) a smallest positive integer by the well ordering property of the set \mathbb{N} .

Hence \exists an $q \in \mathbb{Z}$ such that $a - b \cdot q = r$, $r \ge 0$.

We proclaim that: r < b.

Because $r \ge b \implies a - (q+1).b = (a-q.b) - b = r - b \ge 0$.

Also
$$a - (q + 1).b = (a - q.b) - b = r - b < r.$$

Now
$$a - (q + 1).b \in S$$
, $0 \le a - (q + 1).b < r$.

 \Rightarrow r cannot be the least element of S, a contradiction.

Hence $a = b \cdot q + r$ where, $0 \le r < b$.

Uniqueness of q & r:

Let us suppose that $a = b \cdot q + r$, $a = b \cdot q_1 + r_1$ where $0 \le r$, $r_1 < b$;

 $q, q_1, r, r_1 \in \mathbb{Z}$.

$$\implies b. |q - q_1| = |r_1 - r|, -b < r_1 - r < b.$$

$$\Rightarrow b. |q - q_1| = |r_1 - r| < b.$$

$$\Rightarrow |q - q_1| < 1 . \Rightarrow q = q_1 \text{ , since } q, \ q_1 \in \mathbb{Z} .$$
$$\Rightarrow r = r_1 .$$

This completes the proof.

General Version of DIVISION ALGORITHM:

Statement \rightarrow Given two integers a, b, with $b \neq 0$, there exist unique integers q, r such that a = b. q + r, where $0 \leq r < |b|$.

Proof \rightarrow Previously we have proved Division Algorithm for the case when b > 0.

So now we consider the case when b < 0. Then |b| > 0.

By the previous proof, \exists unique q_1 , $r \in \mathbb{Z}$ such that

$$a = |b|.q_1 + r, 0 \le r < |b|$$

$$= -b. q_1 + r , \quad \text{since } b < 0 .$$

 $\therefore a = b.q + r, \text{ where } q = -q_1.$

This completes the proof.

Examples:

1. Let
$$a = -15$$
, 4, 21; $b = 6$.
 $-15 = 6$. $(-3) + 3 \implies q = -3$, $r = 3$;
 $4 = 6$. $0 + 4 \implies q = 0$, $r = 4$;
 2 . Let $a = -15$, 4, 21; $b = -6$.
 $-15 = (-6)$. $(3) + 3 \implies q = 3$, $r = 3$
 $4 = (-6)$. $0 + 4 \implies q = 0$, $r = 4$
 2 1 6 . $3 + 3 \implies q = 3$, $r = 3$.

2. Let
$$a = -15$$
, 4, 21; $b = -6$.
 $-15 = (-6)$. (3) + 3 $\Rightarrow q = 3$, $r = 3$
 $4 = (-6)$. 0 + 4 $\Rightarrow q = 0$, $r = 4$
 $21 = (-6)$. (-3) + 3 $\Rightarrow q = -3$, $r = 3$

REMARK: When the remainder r = 0 in the Division algorithm, we have the following: **Definition 1.** An integer a is said to be divisible by an integer $b \neq 0$ if \exists some $c \in \mathbb{Z}$ a = b.c and we write b|a.

Properties:

- 1. $b|a \Rightarrow (-b)|a$, because $a = b.c \Rightarrow a = (-b).(-c)$,
- 2. b|a and $a|c \Rightarrow b|c$,
- 3. b|a and a|b if and only if $b = \pm a$,
- 4. b|a and $b|c \Rightarrow b|(a.x + c.y)$ for any $x, y \in \mathbb{Z}$. Because $b|a \implies a = b.m$ for some $m \in \mathbb{Z}$; $b|c \implies c = b.n$ for some $n \in \mathbb{Z}$. $\therefore a.x + c.y = b.m.x + b.n.y = b.(m.x + n.y) \implies b|(a.x + c.y).$

Definition 2. An integer d is said to be a common divisor of the integers a and b if d|aand d|b.

Properties:

- 1. 1 is a *common divisor* of an arbitrary pair of integers a and b;
- 2. If both a = 0 and b = 0 then each integer a common divisor of a and b;
- 3. If at least one of a and b is non-zero then \exists only a *finite* number of positive common divisors.

Definition 3. If $a, b \in \mathbb{Z}$, not both zero, the greatest common divisor of a and b, denoted by gcd(a, b) is the positive integer d satisfying

- i. d|a and d|b; (d as a common divisor)
- ii. If for some $c \in Z^+$, $c \mid a$ and $c \mid b \Rightarrow c \mid d$. (d is the greatest common divisor)

NOTE: gcd(a, -b) = gcd(-a, b) = gcd(-a, -b) = gcd(a, b). (follows from definition)

Example: Let a = -20, b = -30. The common positive divisors of a and b are: 1, 2, 5, 10.

$$gcd(-a, -b) = gcd(-20, -30) = 10$$
.

Definition 4. $a, b \in \mathbb{Z}$, not both zero, are said to be **prime to each other** or **relatively prime** if gcd(a, b) = 1.

Properties of gcd:

1. Theorem: If $a, b \in \mathbb{Z}$, not both zero, then $\exists u, v \in \mathbb{Z}$ s.t. gcd(a, b) = a.u + b.v.

Proof
$$\rightarrow$$
 Let us consider $S = \{a.x + b.y : x, y \in \mathbb{Z}, a.x + b.y > 0\}$. So $S \subseteq Z^+$.

To show first: S is non-empty.

Since $a, b \in \mathbb{Z}$, not both zero, let $a \neq 0$ then |a| > 0.

$$\Rightarrow$$
 $|a| = a.x + b.0 \in S$, where $x = 1$, $y = 0$ if $a > 0$,

and
$$x = -1$$
, $y = 0$ if $a < 0$.

 \Rightarrow S is non-empty.

Since S is a non-empty set of positive integers, by the well ordering property of the set \mathbb{N} , S contains a least element d (say).

Then $d = a.u + b.v : u, v \in \mathbb{Z}$.

By division algorithm, $a = d \cdot q + r$ where $q, r \in \mathbb{Z}$, $0 \le r < d$.

$$\Rightarrow r = a - d. q = a - (a.u + b.v). q = a.(1 - u.q) + b.(-v.q).$$

 \Rightarrow if r > 0 then $r \in S$.

Again if r < d and d being the least element in S then $r \notin S$.

So 0 < r < d is not possible.

Consequently, $r = 0 \implies a = d \cdot q \implies d \mid a$.

By similar arguments considering $b = d \cdot q + r$ we can show that $d \mid b$.

So d|a and d|b.

Next to show: d = gcd(a, b).

Let
$$c|a$$
 and $c|b \implies c|(a.u+b.v) \implies c|d \implies d = gcd(a,b)$.

This proves the theorem.

NOTE: (i) gcd(a, b) can always be expressed as a linear combination of a and b.

(ii)
$$d = gcd(a, b)$$
 is the least positive value of $a.x + b.y$; $x, y \in \mathbb{Z}$.

(iii)
$$d = a.u + b.v = a.(u + k.b) + b.(v - k.a)$$
, where $k \in \mathbb{Z}$.

So integers x and y are not unique for which the integer a. x + b. y is least positive.

- **2.** Theorem: If $a, b \in \mathbb{Z}$, not both zero, and $k \in \mathbb{Z}^+$ then gcd(ka, kb) = k. gcd(a, b).
 - Proof → Let d = gcd(a,b). Then $\exists u, v \in \mathbb{Z}$ s.t. d = a.u + b.v; d|a and d|b. Now $d|a \Rightarrow k.d|k.a$ and $d|b \Rightarrow k.d|k.b$.

 ⇒ k.d is a common divisor of k.a and k.b.

 Let c be any other common divisor of k.a and k.b.

 ∴ $c|k.a \Rightarrow k.a = m.c$ and $c|k.b \Rightarrow k.b = n.c$; $m, n \in \mathbb{Z}$.

 Now k.d = k.(a.u + b.v) = m.c.u + n.c.v = (m.u + n.v).c⇒ c|k.d.

 Consequently, k.d = gcd(ka,kb). i.e., gcd(ka,kb) = k.gcd(a,b).
- 3. Theorem: If $a, b \in \mathbb{Z}$, not both zero, then gcd(a, b) = 1 if and only if $\exists u, v \in \mathbb{Z}$ s.t. $1 = a \cdot u + b \cdot v$.
 - Proof → Let gcd(a,b) = 1. Then $\exists u,v \in \mathbb{Z} \ s.t. \ 1 = a.u + b.v$.

 Conversely, let $\exists u,v \in \mathbb{Z} \ s.t. \ 1 = a.u + b.v$ and let d = gcd(a,b).

 Since d|a and d|b then d|(a.x + b.y); $\forall x,y \in \mathbb{Z}$. $\Rightarrow d|1 \Rightarrow d = 1$, since $d \in \mathbb{Z}^+$. $\Rightarrow gcd(a,b) = 1$.
- 4. Theorem: If d = gcd(a, b), then $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
 - $\begin{array}{ll} \textit{Proof} \longrightarrow & \text{Let } d = gcd(a,b) \text{ . Then } d \mid a \text{ and } d \mid b \text{ .} \\ \\ d \mid a \Longrightarrow \exists \ m \in \mathbb{Z} \quad \textit{s.t. } a = m.d \ ; d \mid b \Longrightarrow \exists \ n \in \mathbb{Z} \quad \textit{s.t. } b = n.d \ . \\ \\ \text{Now } \frac{a}{d} = m \text{ , } \frac{b}{d} = n \text{ ; so } \frac{a}{d} \text{ and } \frac{b}{d} \text{ are integers.} \\ \\ \text{Since } d = gcd(a,b) \text{ then } \exists \ u,v \in \mathbb{Z} \quad \textit{s.t. } d = a.u + b.v \ . \\ \\ \Longrightarrow 1 = \left(\frac{a}{d}\right).u + \left(\frac{b}{d}\right).v \ . \quad \Longrightarrow gcd\left(\frac{a}{d},\frac{b}{d}\right) = 1 \ . \end{array}$
- 5. Theorem: If a|b.c and gcd(a,b) = 1, then a|c.
 - Proof → $a|b.c \Rightarrow \exists k \in \mathbb{Z} \quad s.t. \quad b.c = k.a$ $gcd(a,b) = 1 \Rightarrow \exists u,v \in \mathbb{Z} \quad s.t. \quad 1 = a.u + b.v \quad .$ $\Rightarrow c = a.u.c + b.v.c \Rightarrow c = a.u.c + k.a.v = (u.c + v.k).a \quad .$ $\Rightarrow a|c \quad [$ Since $u.c + v.k \in \mathbb{Z}$]
- 6. Theorem: If a|c and b|c with gcd(a,b) = 1, then a.b|c.
 - Proof → $a|c \Rightarrow \exists m \in \mathbb{Z}$ s.t. c = m.a; $b|c \Rightarrow \exists n \in \mathbb{Z}$ s.t. c = n.b $gcd(a,b) = 1 \Rightarrow \exists u,v \in \mathbb{Z}$ s.t. $1 = a.u + b.v \Rightarrow c = a.u.c + b.v.c$ $\Rightarrow c = a.u.n.b + b.v.m.a = a.b.(u.n + v.m)$ $\Rightarrow a.b|c$. [Since $u.n + v.m \in \mathbb{Z}$]

7. Theorem: If gcd(a, b) = 1 and gcd(a, c) = 1 then gcd(a, b.c) = 1.

Proof →
$$gcd(a, b) = 1$$
 ⇒ ∃ $u, v \in \mathbb{Z}$ s.t. $1 = a.u + b.v$ (i)
 $gcd(a, c) = 1$ ⇒ ∃ $p, q \in \mathbb{Z}$ s.t. $1 = a.p + c.q$ (ii)
From (i) & (ii) we get: $b.v = 1 - a.u$... (iii)
and $c.q = 1 - a.p$... (iv)
Multiplying (iii) & (iv) we get, $b.c.(v.q) = 1 - a.p - a.u + a^2.u.p$
⇒ $a.(u + p - a.u.p) + b.c.(v.q) = 1$
⇒ $gcd(a, b.c) = 1$. [Since $(u + p - a.u.p), v.q \in \mathbb{Z}$]

EUCLIDEAN ALGORITHM:

Euclidean algorithm is an efficient method of finding the *gcd* of two given integers by repeated application of the division algorithm.

Procedure \rightarrow Let a, b be two integers. Without loss of generality, let us assume a > b > 0, since gcd(a, b) = gcd(|a|, |b|).

Applying the division algorithm successively, we obtain the following relations:

```
\begin{array}{l} a=b.\,q_1\,+r_1\;;\;\;0< r_1< b\;,\;\; [q_1=quotient,\;r_1=remainder\neq 0, \text{when }a\text{ is divided by }b]\\ b=r_1.\,q_2+r_2\;;\;\;0< r_2< r_1\;,\;\; [q_2=quotient,\;r_2=remainder\neq 0, \text{when }b\text{ is divided by }r_1]\\ r_1=r_2.\,q_3+r_3\;;\;\;0< r_3< r_2\;,\;\; [q_3=quotient,\;r_3=remainder\neq 0, \text{when }r_1\text{ is divided by }r_2]\\ \dots\dots\dots\dots\dots\dots\\ This process continues until some zero remainder appears.\\ r_{n-2}=r_{n-1}.\,q_n+r_n\;;\;0< r_n< r_{n-1}\;,\; [q_n=quotient,\;r_n=remainder\neq 0, \text{when }r_{n-2}\text{ is }\\ \text{divided by }r_{n-1}\;;\; \text{let us assume that }r_n\text{ is the last non-zero remainder}]\\ r_{n-1}=r_n.\,q_{n+1}+0\;;\;0< r_n< r_{n-1}\;,\; [q_{n+1}=quotient,\;r_{n+1}=0, \text{when }r_{n-1}\text{ is divided by }r_n]. \end{array}
```

We assert that $r_n = \gcd(a, b)$.

First of all we prove the Lemma: If $a = b \cdot q + r$, then gcd(a, b) = gcd(b, r).

```
Proof: Let d = \gcd(a, b) \Rightarrow d|a, d|b \Rightarrow d|(a - b, q) \Rightarrow d|r.

\Rightarrow d is a common divisor of b and r.

Let c be any other common divisor of b and r \Rightarrow c|(b, q + r) \Rightarrow c|a.

\Rightarrow c is a common divisor of a and b \Rightarrow c|d, since d = \gcd(a, b).

\Rightarrow d = \gcd(b, r), since d is a common divisor of b and c.

\Rightarrow \gcd(a, b) = \gcd(b, r).

We utilize the lemma to show that r_n = \gcd(a, b).

r_n = \gcd(0, r_n) = \gcd(r_{n-1}, r_n) = \gcd(r_{n-2}, r_{n-1}) = \gcd(r_{n-3}, r_{n-2}) = \cdots
```

Also r_n can be expressed as a linear combination of a and b.

Because we have
$$r_n=r_{n-2}-r_{n-1}$$
, $q_n=r_{n-2}-(r_{n-3}-r_{n-2},q_{n-1})$, q_n .
$$=(1+q_{n-1},q_n).r_{n-2}+(-q_n).r_{n-3}$$
. [linear combination of r_{n-2} , r_{n-3}]

Proceeding backwards we can express r_n as a linear combination of a and b.

 $= \gcd(r_2, r_3) = \gcd(r_1, r_2) = \gcd(b, r_1) = \gcd(a, b).$

Exercise: 9. Use Euclidean algorithm to find integers u and v such that

(i)
$$gcd(72, 120) = 72u + 120v$$
 (ii) $gcd(13, 80) = 13u + 80v$.

Solution: (i) Let us find the gcd(72, 120). By Euclidean algorithm,

$$120 = 72.1 + 48$$
, $72 = 48.1 + 24$, $48 = 24.2 + 0$;

 \therefore gcd(72, 120) = 24 (The last non-zero remainder).

Now
$$24 = 72 - 48.1 = 72 - (120 - 72).1 = 72.2 + 120.(-1).$$

= $72u + 120v$, where $u = 2, v = -1$.

Solution: (ii) Let us find the gcd(13, 80). By Euclidean algorithm,

$$80 = 13.6 + 2$$
, $13 = 2.6 + 1$, $2 = 1.2 + 0$;

 \therefore gcd(13,80) = 1 (The last non-zero remainder).

Now
$$1 = 13 - 2.6 = 13 - (80 - 13.6)$$
. $6 = 13.37 + 80$. (-6) . $= 13u + 80v$, where $u = 37$, $v = -6$.

Exercise: 10. Find integers u and v satisfying

(i)
$$20u + 63v = 1$$
, (ii) $30u + 72v = 12$, (iii) $52u - 91v = 78$.

Solution: (i) Let us find the gcd(20,63). By Euclidean algorithm,

$$63 = 20.3 + 3$$
, $20 = 3.6 + 2$, $3 = 2.1 + 1$, $2 = 1.2 + 0$.

 \therefore gcd(20,63) = 1 (The last non-zero remainder).

Now
$$1 = 3 - 2.1 = 3 - (20 - 3.6)$$
. $1 = 3.7 + 20$. (-1)
= $(63 - 20.3)$. $7 + 20$. $(-1) = 63.7 + 20$. (-22) .
= $20u + 63v$, where $u = -22$, $v = 7$.

Solution: (ii) Do yourself.

Solution: (iii) Let us find the gcd(52,91). By Euclidean algorithm,

$$91 = 52.1 + 39$$
, $52 = 39.1 + 13$, $39 = 13.3 + 0$.

$$\therefore$$
 $gcd(52, 91) = 13$ (The last non-zero remainder).

Now
$$13 = 52 - 39.1 = 52 - (91 - 52.1) = 52.2 - 91.1$$

$$\implies$$
 13.6 = 52.2.6 - 91.1.6

$$\Rightarrow$$
 78 = 52.12 - 91.6 = 52*u* - 91*v*, where *u* = 12, *v* = 6.